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Abstract—Alzheimer’s disease (AD) is a growing global health
concern and correct diagnosis is crucial for effective treatment.
In this study, we present a novel method for the detection
of AD using gene expression data from blood samples. We
normalized and combined four publicly available Alzheimer’s
datasets and trained a Vision Transformer (ViT) model. This
combined dataset had almost seven times more features than
patient samples which can cause models to overfit on the training
data. To overcome this issue, we employed Linear Discriminant
Analysis (LDA) to reduce the dimensionality of the data and
noise injection to encourage generalizability and robustness. We
then compared our model to several state-of-the-art models that
used Support Vector Machines (SVMs), Convolutional Neural
Networks (CNNs), and Deep Neural Networks (DNNs). Our
model, AGED-ViT, achieved an average accuracy of 88.4% and
area under the curve (AUC) of 0.951 on the combined dataset,
outperforming previous methods. Our results demonstrate the
importance of preprocessing techniques for data with more
features than samples to reduce overfitting, as well as the
powerful predictive capabilities of ViTs, establishing a foundation
for further exploration and optimization of the transformer
architecture in the context of genomic diagnosis. This study
can contribute to improving the accuracy of AD diagnosis, thus
facilitating intervention and leading to a more promising outcome
for patients.

Index Terms—Machine Learning, Alzheimer’s disease, Trans-
formers, Gene Expression.

I. INTRODUCTION

A. Background

Over 55 million people worldwide suffer from the effects
of Alzheimer’s Disease (AD) or other dementias [1] and this
number is only expected to grow as the global population ages.
Although some treatments are somewhat effective in slowing
down the progression of AD [13], [16], they are effective only
in the early stages of the disease. Early diagnosis of AD,
however, remains especially challenging due to the lack of
any singular metric or biomarker able to predict it effectively.
Currently, medical professionals rely on questionnaires or
mental tests involving counting, memory, or problem-solving
to diagnose AD [18]. The use of such tests is not ideal, as they
are subjective and only diagnose Alzheimer’s after moderately

severe symptoms develop, ultimately delaying treatments until
after the effective window.

Previous studies have attempted to address this growing is-
sue by applying a variety of statistical techniques and machine-
learning algorithms to gene expression data from patient blood
samples [5], [8], [9], [14]. However, these studies often run
into an issue known as the “curse of dimensionality”. In most
genomic datasets there is a significantly higher number of
features than the number of samples. This leads to lower
accuracy scores due to neural network overfitting [9].

We employ two key techniques to help alleviate this ten-
dency to overfit; Linear Discriminant Analysis (LDA) and
noise injection. LDA was chosen for dimensionality reduction
due to its use in a previous study for this task [9]. LDA projects
high dimensional data to a lower dimension while maintaining
the maximum possible variance between classes [4]. Noise
injection helps reduce overfitting by adding random noise to
each input sample, thus forcing the model to learn general
patterns.

Transformers are a type of neural network originally de-
veloped for use in natural language processing (NLP) [17].
Recently, they emerged as an alternative to traditional convo-
lutional neural networks (CNNs) in image recognition tasks
[3]. One limitation of traditional CNNs is that they are only
capable of finding relationships within each kernel, which is
typically only a square of pixels comprising a small portion
of the entire image. This limits their ability to perceive
global relationships. The Vision Transformer (ViT) solves this
issue by feeding linearly embedded image patches through a
standard transformer model [3]. Due to the self-attention layer
of the transformer, the ViT is able to elucidate relationships
in the information contained in patches across the image. For
our application, this allows us to find complex relationships
between gene expression values, regardless of their location in
the image. We theorize that the transformer’s ability to focus
on the most relevant information can significantly enhance
model accuracy, allowing for more accurate diagnosis.

This study, which is the development of a short paper



presented at IEEE CIBCB 2023 [7], aims to develop a novel
method for the diagnosis of Alzheimer’s Disease. Our model,
AGED-ViT (Alzheimer’s Gene Expression Diagnosis - Vision
Transformer) uses a vision transformer model and several pre-
processing steps to predict whether a patient has Alzheimer’s
disease using blood gene expression data.

B. Purpose

As access to healthcare improves for the global population
and the average life expectancy of the world increases, the
incidence of aging-related diseases such as AD will continue to
increase. The purpose of this study was to develop an accurate
diagnostic method for AD using blood gene expression data.
Accurate diagnosis of AD is imperative and would allow
patients to receive necessary treatments early on, drastically
improving their quality of life, slowing down AD progres-
sion, and reducing healthcare costs. An effective model for
interpreting gene expression data could also be generalized
for diagnosing other diseases including cancer, diabetes, and
cardiovascular disease.

II. MATERIALS AND METHODS

An overview of the model is given in Figure 1.

A. Datasets

Four publicly available and anonymized Alzheimer’s
datasets were used for this project: AddNeuroMed1 (ANM1)
and AddNeuroMed2 (ANM2) [15], Nachun et. al (Nachun)
[12], and the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) [2]. These datasets consisted of gene expression tables
extracted from blood samples from AD and healthy control pa-
tients within the same demographic. ANM1, ANM2, Nachun,
and ADNI had 329, 388, 551, and 442 samples respectively,
for a total of 1710 patient samples and 10678 common genes
(Table I). Within the data, there are three classes; Alzheimer’s
Disease (AD), Mild Cognitive Impairment (MCI), and Control
(CTL) (Table I). For the initial analysis, only AD and CTL
samples were included.

TABLE I: Distribution of classes in the individual and com-
bined datasets

Dataset AD MCI CTL Total
ANM1 145 80 104 329
ANM2 140 113 135 388
Nachun 198 124 229 551
ADNI 100 191 151 442
Total 583 508 619 1710

B. Pre-processing

1) Normalization: Prior to combining the datasets, the data
was normalized in both dimensions to a mean of 0 and
standard deviation of 1. That is, the gene expression data
for each patient sample was normalized, as well as the gene
expression data for each gene.

2) Data partitioning: After combining the normalized
datasets, the data was split into a 20% test set and an 80%
training set.

3) Pearson Correlation and Dimension Reduction: The
correlational power of each gene with AD was calculated
using the Pearson correlation coefficient, which measures the
strength and direction of a linear relationship between two
continuous variables. The formula for the Pearson correlation
coefficient r is given by:

r =

∑
(x−mx)− (y −my)√∑
(x−mx)2

∑
(y −my)2

where mx is the mean of the vector x and my is the mean
of the vector y. The Pearson correlation coefficient ranges
from -1 to 1, where an r-value of 1 indicates a perfect
positive linear relationship between variables, -1 indicates a
perfect negative linear relationship, and 0 indicates no linear
relationship between the variables. Genes were then sorted by
their mean Pearson correlation coefficient, and the dataset was
reduced to only the 4,096 most discriminative genes.

4) Reshaping Data to 2D: Each patient sample was con-
verted to a 2D image by wrapping the data row-by-row. That
is, the first row contains the gene expressions for genes with
the highest Pearson correlation coefficients, and the last row
contains expressions for genes with the lowest Pearson corre-
lation coefficients. The gene ordering was then randomized to
prevent the introduction of biases.

5) Linear Discriminant Analysis Dimensionality Reduction:
Despite reducing the number of genes down to the 4,096 most
discriminative, our dataset still has more features than samples.
We therefore reduce the dimension further by employing linear
discriminative analysis (LDA). LDA is a supervised technique
which aims to find a projection that best separates the data.

LDA was applied to the data in 256 batches, with each batch
comprised of 64 genes. The genes used were selected on a
rolling basis, with each batch selecting 8 new genes iteratively.
This effectively allows for the dimensionality of the image to
be reduced whilst simultaneously preserving the discriminative
properties of each gene (Figure 2). In this way, each patient
sample was reduced to a 32 × 32 image (Figure 3).

6) Noise Injection: To prevent overfitting of the neural
network, Gaussian noise injection was used. Gaussian noise is
a randomized form of noise that takes the form of a standard
distribution in which the center of the curve represents the
original value. For the training dataset, the standard distri-
bution used was one with a standard deviation of 0.01, thus
introducing 1% noise. In this way, noise injection was used to
augment the training set ten-fold, allowing for different noisy
representations of the same data.

C. Network Architecture

For the network architecture, a Vision Transformer (ViT)
model was used [3]. Hyperparameter tuning of the layer
count and size, patch size, and number of attention heads
was performed manually on the training set. The optimal
configuration found is given in Table II and a plot of the AUC
for varying number of layers is given in Figure 4. The model
was then retrained using the optimal hyperparameters.



Fig. 1: Overview of the model, showing data pre-processing steps and Vision Transformer

TABLE II: ViT Model Architecture

Number of Layers 8
Layer sizes 96
Size of Patches 2
Number of Attention Heads 12

The model was implemented using a PyTorch Vision Trans-
former (ViT) binary classification model with 5.9M parame-
ters. The model was trained for 10 epochs with batch size 100
using the Adam optimizer with a learning rate of 0.001. The
loss criteria was L1 (mean absolute error) loss. Figure 5 shows
the convergence of the model loss.

D. Evaluation Metrics

The model’s performance was evaluated using two metrics:
accuracy and Area Under the Curve (AUC) of the Receiver
Operating Characteristic (ROC) graph. The accuracy is the
percentage of samples correctly predicted. The AUC is given
by plotting the false positive rate against the true positive rate
and serves as a robust measure of a model’s performance.
Notably, AUC is advantageous as it remains unaffected by
imbalances in class distribution within testing sets. On the

other hand, accuracy is valued for its simplicity and the ease
with which it can be compared across different studies. The
model was evaluated using 5-fold cross-validation.

III. RESULTS

The dataset contained three classes, Alzheimer’s Disease
(AD), Mild Cognitive Impairment (MCI), and Control (CTL).
We initially omitted the MCI class and only looked at the bi-
nary classification task of classifying AD vs CTL. In follow up
experiments, we include the MCI class and perform pairwise
binary classification. We also assess the effect of combining
the MCI class with both the AD and CTL classes. Finally, we
assess how well our model performs on individual datasets by
re-training and evaluating our model on the ANM1, ANM2,
and ADNI datasets.

A. Comparison of AD vs CTL

Our first experiment was the binary classification of AD or
CTL from patients’ blood gene expression data. The confusion
matrix for the model evaluated on the test set is given in Table
III.

AGED-ViT achieved an average accuracy of 0.883 ± 0.019,
outperforming current state-of-the-art (SOTA) models, as seen



TABLE III: Confusion Matrix for AGED-ViT evaluated on the
combined test set

Predicted Positive Predicted Negative
Actual Positive 0.92 ± 0.05 0.08 ± 0.05
Actual Negative 0.14 ± 0.07 0.86 ± 0.07

in Table IV. The proposed model was able to outperform
Kalkan et al. [9], the previously best-performing model, as
well as many other models, including DeepInSight [14].

B. Comparison of AD vs MCI vs CTL

In a follow-up experiment, we evaluate AGED-ViT’s perfor-
mance at discriminating between AD and MCI as well as MCI
and CTL classes. We also assess the effect of combining the
MCI class with the AD and CTL classes. These results were
then compared to those obtained by Kalkan et al. [9] (Table V).

Fig. 2: Example of LDA. The multidimensional data is pro-
jected into one axis, separating the two groups with maximum
variance.

Fig. 3: Example of Model Pre-Processing. Top left: patient
data before normalization. Top right: after normalization. Bot-
tom left: After LDA. Bottom right: after noise injection. Data
taken from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI), showing a control patient.

Fig. 4: Relative AUC vs the number of layers on ANM1.

Similar to Kalkan et al., our model’s performance decreased
when trying to differentiate between AD and MCI and MCI
and CTL. This is likely due to the fact that the MCI class will
share some features similar to the AD class, and some similar
to the CTL class. We also found that combining the MCI class
with either the AD or CTL classes leads to a larger decrease
in performance, compared to the classification of AD vs CTL
only. This indicates that despite being somewhat similar to
both the AD and CTL classes, the MCI class is sufficiently
different from both. Despite these declines in performance,
AGED-ViT continues to outperform the Kalkan et al. model
across all pairwise classifications (Table V).



Fig. 5: Convergence of L1 loss of AGED-ViT on training
(blue) and testing (orange) data. X-Axis is Epochs, Y-Axis
is loss.

TABLE IV: Comparison of Machine Learning Model Perfor-
mances

Study Method Accuracy AUC
El-Gawady et
al. (2022)

Multiple
Feature
Selection +
SVM

0.690 0.690

Güçkıran et al.
(2019)

LASSO +
SVM

0.764 0.850

DeepInsight -
Sharma et al.
(2019)

DeepInsight
(tSNE + CNN)

0.670 0.743

Kalkan et al.
(2022)

LDA-based
imaging +
CNN

0.842 0.875

AGED-ViT Iterative LDA-
based imaging
+ ViT

0.883 ± 0.019 0.950 ± 0.005

Accuracy and AUC for other studies taken from comparison con-
ducted by Kalkan et al. trained and tested on the ANM1, ANM2,
Nachun, and ADNI datasets [9].

C. Performance Across Datasets

We then assessed how well AGED-ViT performs on three
of the individual datasets. We retrained and tested the model
on each of the ANM1, ANM2, and ADNI datasets. Table
VI shows the AUC of AGED-ViT as well as a model by
Lee & Lee [11]. The Lee & Lee study only assessed the
ANM1, ANM2, and ADNI datasets, hence we only give the
results for these three datasets (omitting the Nachun data). The
model outperformed Lee & Lee across each of these datasets.
The highest performance was achieved on ANM1, beating
the previous SOTA model by 0.9%. On these datasets, the
model performed better with lower layer counts and a higher
dropout rate. We believe that due to the limited dataset for
these experiments, these changes help prevent the model from
overfitting.

Fig. 6: AUC on combined dataset, X-axis is true positive rate,
Y-axis is false positive rate.

TABLE V: Comparison of Accuracy for Alzheimer’s Disease
Classification Models for AD vs. MCI vs. CTL

Classification Pair Kalkan et al.
(Accuracy)

AGED-ViT
(Accuracy)

AD vs CTL 0.842 0.883
MCI vs CTL 0.698 0.833
MCI vs AD 0.704 0.848

AD vs. (MCI and CTL) 0.707 0.793
(AD and MCI) vs. CTL 0.773 0.815

D. Ablation Study

An ablation study was conducted on the final model, as
illustrated in Figure 7, to assess the impact of individual
network components. We systematically removed each of
LDA, noise injection, and normalization, and assessed the
model’s performance. We observed that the absence of LDA
and noise injection resulted in a large drop in both accuracy
and AUC. The drop in AUC indicates that the positive AD
class was not as easily separable from the CTL class as
previously, resulting in a higher number of false positives.
Additionally, we saw a large decrease in the accuracy as well,
we can assume that this is largely due to CTL samples being
incorrectly classified as AD. Since the data was imbalanced
and contained a higher number of CTL samples than AD
samples, this is likely the result of the model overfitting. LDA

TABLE VI: Comparison of AUC and Accuracy for Different
Datasets

Dataset Lee & Lee
(AUC)

AGED-ViT
(AUC)

AGED-ViT
(Accuracy)

ANM1 0.874 0.882 ± 0.009 0.869 ± 0.011
ANM2 0.804 0.805 ± 0.014 0.742 ± 0.008
ADNI 0.657 0.669 ± 0.002 0.703 ± 0.0

Reported AUC scores for Lee & Lee models are for a DNN for
ANM1 and ADNI and a SVM for ANM2.



Fig. 7: Ablation study showing the effect of removing various
components of the AGED-ViT model.

reduces the dimensionality while noise injection adds a degree
of uncertainty to each expression value, and hence forces the
model to learn more general patterns.

When we omitted normalization, we saw only a slight drop
in AUC but a larger decrease in accuracy. The high AUC
indicates that the model is still able to maintain a low count
of false positives, however, the low accuracy tells us that this
is at the expense of an increase in false negatives. This likely
suggests that the data has a few genes for which the expression
value is extremely low or high, to which the model is then
attributing too much weight to. Normalizing the data helps
ensure that the model learns the impact of each gene equally.

In conclusion, the incorporation of all three components,
LDA, noise injection, and normalization, was deemed essential
for optimizing the model’s performance.

IV. ANALYSIS

The Vision Transformer model is structured to process input
images, or, by analogy, structured data arrays representing
gene expressions, into a series of patches. These patches
are then embedded into a high-dimensional space, where
the transformer architecture captures complex patterns and
relationships among the data points. Specifically, the model’s
key features include:

1) Patch Embedding: Converts each image patch into a
high-dimensional vector, preparing it for processing by the
transformer. This step is critical for understanding local fea-
tures within the broader context of the entire dataset.

2) Transformer Architecture: Utilizes self-attention mech-
anisms to independently weigh different parts of the data,
allowing the model to focus on the most informative features
for diagnosing Alzheimer’s disease. This adaptability is a
significant advantage over more traditional analysis techniques
that treat all data points equally.

3) Output Layer: Translates the transformer’s complex
representations into a final prediction. This step is crucial for
making the model’s insights actionable, providing a direct link
between the data and a tangible diagnostic outcome.

We theorize that this model architecture directly impacts
performance through its ability to process and analyze data at
multiple scales. By focusing on both local and global features
within the data, the Vision Transformer can identify subtle
patterns that might be missed by models that analyze the data
in a more uniform manner. Moreover, the use of self-attention
allows for dynamic adaptation to the most informative features,
which is particularly beneficial for the complex and varied
nature of gene expression data associated with Alzheimer’s
disease.

The specific parts of the model contributing to its effective-
ness in diagnosing Alzheimer’s disease include the embedding
layer, which ensures that data is properly pre-processed and
represented; the transformer mechanism, which dynamically
adapts to focus on the most relevant features of the data; and
the output layer, which translates complex patterns into a clear
diagnosis outcome.

V. DISCUSSION

A. Implications of Findings

The application of the Vision Transformer model to
Alzheimer’s disease diagnosis represents a significant advance-
ment in computational biology. By adapting an architecture
originally designed for visual data to interpret complex gene
expression patterns, our research demonstrates the flexibility
and power of transformer models. This approach not only
enhances our ability to diagnose Alzheimer’s more accurately
but also opens the door to novel applications of transformer
models in understanding other complex diseases. The ability
of the ViT model to dynamically focus on the most informative
features of the data could revolutionize how we approach
the analysis of biological datasets, moving towards a more
nuanced understanding of disease mechanisms.

B. Potential Limitations and Future Work

While the Vision Transformer model shows promising
results, it’s important to acknowledge potential limitations.
The model’s performance is highly dependent on the quality
and quantity of training data. As mentioned in the Visual
Transformer paper, transformers do not generalize well when
trained on insufficient data [3]. Additionally, biases in dataset
composition can lead to skewed interpretations and potentially
limit the model’s applicability across different populations.

To mitigate these risks, future research should focus on
diversifying and enlarging data sources and implementing
techniques like data augmentation to ensure robust model per-
formance. Additionally, the complexity of transformer models
can lead to challenges in interpretability. Developing method-
ologies for model explainability will be crucial for translating
these advanced computational analyses into actionable insights
for clinicians.

Improvements can also be made to the pre-processing
pipeline. Our model employs LDA for dimensionality reduc-
tion, however, there are other techniques that could be explored
such as Uniform Manifold Approximation and Projection
(UMAP) or Heteroscedastic Discriminant Analysis (HDA).



UMAP is a nonlinear dimensionality reduction technique and
thus may be able to capture more complex relationships
between the genes, while HDA negates the assumption of
equal sample covariance within each class. Using these more
powerful techniques may lead to an improvement in model
accuracy and AUC.

VI. CONCLUSION

This study demonstrates the potential for employing Vision
Transformers with a robust pre-processing pipeline to detect
Alzheimer’s disease using gene expression data. AGED-ViT
outperforms several existing approaches which use SVMs
[5], [8], CNNs [9], [14], and DNNs [11], showing promise
for accurate detection and improved patient outcomes. Given
the globally aging population and ever-increasing rates of
Alzheimer’s, effective ways to combat AD have never been
of greater importance. With innovative treatments entering the
market, doctors need an effective and efficient way to diagnose
AD. With this powerful tool, healthcare providers would be
able to diagnose AD using only a simple blood sample from
a patient and an inexpensive gene expression bead chip. This
work also provides a useful transformer framework for the
diagnosis and management of other diseases through the novel
approach to interpreting gene expression data. This could help
in the diagnosis and treatment of other diseases more generally.
As gene expression data is very hard to interpret by humans,
a sophisticated transformer-based approach has the potential
to open up new frontiers in medicine by allowing for greater
diagnostic accuracy and the ability to process and understand
more data than possible with traditional methods.
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